Current Research

2018 Research Projects


A/Prof Janet Davies Queensland University of Technology $99,953 from 2018 to 2019
Point of care diagnosis for hay fever and asthma; development and validation of rapid subtropical specific IgE tests

This project proposes to use allergen molecules of subtropical grass pollen for more specific tests and treatments to assist people allergic to grasses in subtropical regions. Approximately 15% of the Australian population suffers from allergic diseases and the devastating effect of such allergies was felt in the recent thunderstorm asthma event in Melbourne where over 12,000 people were affected and 9 reportedly died. After identifying and characterising all the key allergens of two major subtropical grass pollens and making headway in subtropical grass pollens research, A/Prof Davies is proposing to partner with Abionic SA, a Swiss company that has developed an instrument that quickly measures levels of sensitivity to allergens in doctors’ rooms, to investigate whether recombinant version of their pollen allergens are effective as a more specific and rapid point of care diagnostic test for grass pollen allergy in warmer regions of the world. NFMRI funding would help support optimal generation and purification of two quality assessed recombinant allergen components, as well as trialling these component on a new point of care diagnostic platform. The pre-commercial research will advance the innovations quickly for commercial uptake.


Prof Michael Good AO Griffith University $200,000 during 2018
Manufacture and evaluation of a chemically attenuated Plasmodium falciparum whole parasite blood-stage malaria vaccine

Prof Good’s team has developed and patented a novel approach to a malaria vaccine that in their published pre-clinical studies has shown long-lasting protection against different strains and species of the malaria parasite. This approach is based on the use of the entire parasite which is made non-infectious by treatment with a chemical agent. For the human malaria parasite (Plasmodium falciparum) vaccine manufacture involves in vitro culture of the malaria parasite followed by chemical treatment. This has since been administered as a single dose to eight volunteers who all developed strong cellular immune responses. Since the vaccine has been shown to be safe and well-tolerated, Prof Good’s team now plans to undertake a Phase Ib trial, which will involve 36 volunteers and test the efficacy of the vaccine. NFMRI funding would help support the vaccine manufacture for this trial. The associated clinical trial and activities are already funded via other sources, including Rotary.


A/Prof Philip Sutton Murdoch Childrens Research Institute $150,000 during 2018
Vaccinating against Helicobacter pylori-induced gastric cancer

A/Prof Sutton has invented a vaccine that can prevent gastritis in mice. His vaccine targets the enzyme produced by H.pylori, which opens up gaps in the normally tight, impermeable barrier of the stomach lining. A/Prof Sutton believes that by preventing disruption of this barrier, either before or after H.pylori infection, that they may completely prevent the development of gastritis. A/Prof Sutton wishes to test this vaccine in clinical trials, but to do so he needs to optimise the manufacturing process of the vaccine antigen in order to be able to produce the antigen in sufficient quantity and quality for taking into clinical trials. NFMRI funding will help support optimisation of the manufacturing process for the vaccine antigen. Luinabio, one of the most experienced company in Australia for producing recombinant vaccine antigens used in clinical trials would be contracted by A/Prof Sutton to carry out this work.


Dr Joanna Woodcock University of South Australia $50,002 during 2018
Preclinical evaluation of 14-3-3 protein inhibitors for lung cancer therapy

The cellular protein, 14-3-3, is abundant in many cancers including lung cancer and the increased amount of 14-3-3 protein above normal levels strongly equates to the severity of the cancer and poor patient survival. Importantly, in experimental systems, reduction in levels of 14-3-3 protein in lung cancer cells has been shown to block cancer cell growth and cause cell death. Therefore, 14-3-3 protein represents a promising ‘molecular target’ for the development of new anti-cancer treatment for lung cancer. Several other laboratories in the world have attempted to generate drugs to interfere with14-3-3, but without much success. Through Dr Woodcock’s research, they have found a novel way to inactivate 14-3-3 protein which already shows greater promise. Based on their knowledge of 14-3-3 protein structure and function, they have identified chemical compounds that selectively inactivate 14-3-3 and have shown that these compounds kill lung cancer cells and reduce lung cancer tumour growth in an animal model. They are currently evaluating these compounds in more relevant models of human lung cancer to assess the potential of our 14-3-3-targeting compounds as anti-cancer drugs for lung cancer. This project is supported thanks to generous funding from the NSW Community Foundation, the NSW Community Foundation – Nicholas and Phyllis Pinter Trust (both are managed by Equity Trustees) and NFMRI. Our combined funding will help support the assessment of pharmacokinetic properties of the drug compounds by scientists at CDCO and analysis of those compounds’ properties using RPPA. These studies will enable Dr Woodwock to fully assess the drug-like properties of those compounds and their potential efficacy for lung cancer.


Prof Eric Gowans The University of Adelaide $293,880 from 2016 to 2018
A DNA vaccine for Zika virus

The Gowans laboratory has developed a novel DNA vaccine that is more effective than canonical DNA vaccines and elicits robust immune responses in small (mice) and large (pigs) animals.  A vaccine for the Zika virus is urgently required because there is no therapy, and the link with microcephaly in children born to mothers who were infected during pregnancy demands that women of child-bearing potential be immunised.  As canonical vaccines (eg. live attenuated vaccines) require a considerable period of development, a DNA vaccine that can be generated in a matter of weeks represents an attractive alternative.

In this proposal, Prof. Gowans’ team examine the efficacy of novel DNA vaccines designed to elicit cell-mediated immunity to the Zika virus non-structural proteins or Zika neutralizing antibody in mice.  Thus, a major component of the project is to examine the immune responses in mice and pigs, and the protective efficacy of the vaccines in mice, with a view to identifying the most appropriate strategy to further develop for follow up studies in human clinical trials.

This project is supported thanks to generous support from the NSW Department of Primary Industries.


Prof Des Richardson The University of Sydney $105,500 (2017-2018)
‘Commercial translation of innovative null hepcidin analogues that prevent the anaemia of chronic disease (ACD)’

The anaemia of chronic disease (ACD) is a severe cause of morbidity and mortality in many millions of patients with cancer or inflammatory diseases and is due to excessive levels of the hormone hepcidin. These diseases induce excessive levels of hepcidin, which in turn promotes iron storage, thus preventing its release into the blood leading to severe and debilitating anaemia.

Prof Richardson has discovered that hepcidin is bound in the blood by a specific protein and has since developed an analogue that leads to urinary excretions of excessive hepcidin. NFMRI support will enable commercialisation of this optimal analogue.


Dr Nicholas Opie The University of Melbourne $390,000 (2017-2018)
‘Safety validation of the stent rode: a biomedical device for paralysis that converts thoughts into computer commands”

Dr Opie has developed a minimally invasive brain machine interface that has the potential to return mobility and independence to people with paralysis. His technology can record brain signals and convert them into useful commands that can be used to control computers, wheelchairs, exoskeletons and/or prosthetic limbs. Translation of existing brain machines is hampered by invasive surgical procedures, which require access the brain and lead to immune reactions that are causing device failure within months. Dr Opie and his team have already done enormous progress since receiving a $1.3m seed funding grant from the Defence Advanced Research Projects Agency – having already developed an implantable stent-electrode array that can record neural information from within a blood vessel, mitigating risks associated with open brain surgery.

NFMRI support will help them translate this research into clinical translation via the conduction of a world-first human trial in 2018. To meet this milestone, they must first manufacture the technology in an FDA approved and ISO certified facility and conduct the necessary preclinical experiments to demonstrate reliability, efficacy and safety.


A/Prof Michelle Hill QIMR Berghofer $169,204 (2017)
‘Blood glycoprotein panel for early detection of oesophageal cancer’

A/Prof Hill’s research aims to transform the detection and management of oesophageal adenocarcinoma (OAC) by developing a blood test. OAC is increasingly common due to growth of the major risk factors: chronic reflux and obesity. Although effective treatments are available for early OAC, outcomes remain poor because most cases are diagnosed at advanced stages due to the lack of practical and effective screening tools. A/Prof Hill has identified and patented a panel of readily translatable glycoprotein biomarkers, which can differentiate OAC from benign conditions and healthy controls. Her research program is in the process of evaluating these markers in large patient samples, as a step toward development of a diagnostic test that can be introduced into clinical practice.

NFMRI support will help develop one embodiment of the innovation, the clinical immunoassay. Working with industry partner Precision Antibody, we aim to generate monoclonal antibodies that recognise the three best biomarkers for use to generate immuno-assays. Successful completion will enable the development of a practical diagnostic test based on our biomarkers.





Looking beyond the research and considering translational needs when funding research. How well are your expectations, application and review processes, measures of success and funding strategy aligned with the next steps for translation?

Thank you for voting
You have already voted on this poll!
Please select an option!